杨宏宇

发布日期:2022-11-25 作者: 编辑:材料科学与工程学院 点击:

基本情况

姓名:杨宏宇

性别:女

职称:研究员;博士研究生导师

所在系别:材料加工工程

最高学历:研究生

最高学位:博士学位

电话:18362892910

Emailyanghongyu2021@jlu.edu.cn

备注:个人英文学术主页:https://www.researchgate.net/profile/Hongyu-Yang-9

详细情况
所在学科专业: 材料加工工程
研究方向:

杨宏宇,研究员,博士生导师。研究方向:纳米高效调控合金组织及强韧化;纳米功能陶瓷制备、复合材料界面设计及功能化应用。承担国家自然基金(2项)、博士后基金、吉林省科技发展计划项目等省部级课题9项。近五年作为第一/通讯作者在Composites Part B: Engineering (IF=13.1),Carbon (IF=10.9), International Journal of Extreme Manufacturing (IF=14.7), Composites Part A: Applied Science and Manufacturing 等国际期刊上发表SCI论文50篇(中科院分区一区论文40篇),其中影响因子大于10的SCI论文6篇,ESI高被引论文3篇,他引1000多次,  H影响因子22。授权发明专利15项,国际发明专利2项,专利转化2项。获吉林省“互联网+”大学生创新创业大赛银奖1项,吉林省博士后创业赛优秀奖1项,长春市创新创业大赛一等奖2项。
讲授课程:

1. 现代液态金属成型方法, 本科生(秋季学期);

2. 金属材料强韧化原理与技术, 研究生(春季学期);

3. 生产实习, 本科生(秋季学期);

4. 综合实验, 本科生(春季学期).
教育经历:

1. 2005.09.01-2009.06.30, 吉林大学, 学士;

2. 2009.09.01-2014.06.30, 吉林大学, 博士.
工作经历:

1. 2014.07-2018.10, 江苏科技大学, 讲师;

2. 2018.11-2021.06, 江苏科技大学, 副教授;

3. 2018.12-2021.12, 吉林大学, 脱产博士后;

4. 2021.07-2022.11, 吉林大学, 副研究员/博士生导师;

5. 2022.11-至今,吉林大学, 研究员/博士生导师。
科研项目:

1.国家自然科学基金面上项目, 批准号: 52371109, 微量纳米颗粒调控镁铝系合金微观组织及同步提高强塑性机制, 经费: 51万, 2024.01-2028.12, 在研, 负责人;

2.国家自然科学基金青年项目, 批准号: 51701086, 合金元素参与下CNTs/Al复合材料界面行为及其热物理性能研究, 经费: 25万, 2018.01-2021.12, 结题, 负责人;

3.吉林省科技发展计划项目(重点研发), 批准号: 20230201146GX, 高性能、高服役寿命冲压模具材料产业化应用开发研究, 经费: 50万, 2023.01-2025.12, 在研, 负责人;

4.中国博士后科学基金面上项目, 批准号: 2020M670849, 熔体内原位纳米介质协同调控铝合金微观组织构型及强韧化机制, 经费: 8万, 2020.05-2021.11, 结题, 负责人;

5.吉林省科技发展计划项目(自然科学基金),批准号: 20220101210JC,纳米强化相、多层次组织构型及使役性能协同调控机制,经费: 10万, 2022.07-2025.06, 在研, 负责人;

6.吉林省科技发展计划项目(一汽专项子项), 非热处理低压铝合金材料开发, 批准号: 20220301024GX, 经费: 70万, 2023.01-2024.12, 在研,子项负责人;

7.广东省基础与应用基础研究基金项目, 批准号: 2019A1515110268, 内生纳米陶瓷及固溶元素调控CNTs/Al梯度热沉材料界面化学, 经费: 10万, 2020.01-2022.12, 在研, 负责人;

8.上海航天科技创新基金, 批准号: SAST2020-116, 双相纳米陶瓷(TiC+TiB2)高效强韧化铝合金机理研究及材料开发, 经费: 20万, 2021.01-2022.12, 在研, 参加人(2/7);

9.江苏省自然科学基金青年基金, 批准号: BK20140518, 非晶SiO2中内嵌Si纳米晶体的形状及界面对能隙和介电常数影响的研究, 经费: 19万, 2014.07-2017.06, 结题, 参加人(2/7).
学术论文:

近五年作为第一/通讯作者在Composites Part B: Engineering (IF=13.1), Carbon (IF=10.9), International Journal of Extreme Manufacturing (IF=14.7), Composites Part A: Applied Science and Manufacturing 等国际期刊上发表SCI中科院分区一区以上论文40篇,其中影响因子大于10的SCI论文6篇,ESI高被引论文3篇,成果如下(*通讯作者):

2023年

[1] T.-S. Liu, F. Qiu*, H.-Y. Yang*, S. Liu, Q.-C. Jiang, L.-C. Zhang*, Exploring the potential of FSW-ed Al–Zn–Mg–Cu-based composite reinforced by trace in-situ nanoparticles in manufacturing workpiece with customizable size and high mechanical performances, Composites Part B: Engineering (2023) 110425.

[2] C.-D. Li, F. Qiu, H.-Y. Yang*, F. Chang, T.-Y. Li, H. Zhang, Q.-C. Jiang, Role and mechanism of innovative addition process of trace nano-TiCp in microstructure manipulation and significant mechanical properties enhancement of H13 steels, Journal of Materials Processing Technology 311 (2023) 117819.

[3] T.-J. Miao, S.-Y. Zhang, F. Qiu*, H.-Y. Yang*, T.-S. Liu, S.-L. Shu*, T.-T. Duan, Q.-C. Jiang, Friction stir welding of high strength and toughness cast Al-Si7-Cu4-Mg0.3 alloys manipulated by in-situ nanocrystals, Journal of Materials Processing Technology 118221 (2023) 322.

[4] Y.-F. Yan, S.-Q. Kou, H.-Y. Yang*, B.-X. Dong, S.-L. Shu, L.-Y. Chen, F. Qiu, L.-C. Zhang*, Manipulating interface bonding and microstructure via tuning interfacial reaction for enhancing mechanical property of in-situ TiC/Al cermets, Journal of Materials Processing Technology 317 (2023) 117995.

[5] X.-Y. Song, Y.-J. Wang, J.-X. Zhang, D.-A. Du, H.-Y. Yang*, L. Zhao, F. Peng*, X. Li*, F. Qiu, Microstructure and mechanical properties of aluminum alloy composites with endogenous nano-TiCp, Ceramics International 49 (2023) 6923–6931.

[6] X.-D. Ma, H.-Y. Yang*, B.-X. Dong, S.-L. Shu, Z. Wang, Y. Shao, Q.-C. Jiang, F. Qiu*, Novel method to achieve synergetic strength–ductility improvement of Al–Cu alloy by in situ TiC–TiB2 particles via direct reaction synthesis, Materials Science and Engineering: A 869 (2023) 144810.

[7] T.-S. Liu, F. Qiu*, H.-Y. Yang*, S.-L. Shu, J.-F. Xie, Q.-C. Jiang, L.-C. Zhang, Insights into the influences of nanoparticles on microstructure evolution mechanism and mechanical properties of friction-stir-welded Al 6061 alloys, Materials Science and Engineering: A 871 (2023) 144929.

[8] Y.-F. Yan, X. Zhang, Y. Shao, H.-Y. Yang*, F. Qiu, S.-L. Shu, S.-Q. Kou*, Numerical modeling and failure evolution of microstructure-based in-situ TiB2 and TiC+TiB2 reinforced Cu matrix composites, Journal of Materials Research and Technology 24 (2023) 8606-8617.

[9] Y.-F. Yan, S.-Q. Kou*, H.-Y. Yang*, Y. Shao, F. Qiu, S.-L. Shu, Synergistic optimization of mechanical and tribological properties of TiC modified copper-graphite composites by direct current in-situ sintering, Ceramics International 49(16) (2023) 27069-27078.

[10] Y.-F. Yan, S.-Q. Kou, H.-Y. Yang*, S.-L. Shu*, F. Qiu*, Q.-C. Jiang, L.-C. Zhang*, Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy: preparation, performance, and mechanisms, International Journal of Extreme Manufacturing 5(3) (2023) 032006.

[11] F. Chang, C.-D. Li, H.-Y. Yang*, F. Qiu, S.-L. Shu, L.-Y. Chen, Q.-C. Jiang, Hot-work die steel with superior mechanical properties at room and high temperatures prepared via a combined approach of composition design and nanoparticle modification, Journal of Materials Research and Technology 25 (2023) 1748-1760.

[12] J.-R. Sun, B.-X. Dong, H.-Y. Yang*, S.-L. Shu, F. Qiu*, Q.-C. Jiang, L.-C. Zhang*, The Role of Lithium in the Aging Precipitation Process of Al-Zn-Mg-Cu Alloys and Its Effect on the Properties, Materials 16(13) (2023) 4750.

[13] T.-S. Liu, B.-X. Dong*, H.-Y. Yang*, F. Qiu*, S.-L. Shu*, Q.-C. Jiang, Review on role of intermetallic and ceramic particles in recrystallization driving force and microstructure of wrought Al alloys, Journal of Materials Research and Technology 27 (2023) 3374–3395.

[14] Z.-J. Bao, H.-Y. Yang*, B.-X. Dong, F. Chang, C.-D. Li, Y. Jiang, L.-Y. Chen, S.-L. Shu*, Q.-C. Jiang, F. Qiu*, Development Trend in Composition Optimization, Microstructure Manipulation, and Strengthening Methods of Die Steels under Lightweight and Integrated Die Casting, Materials 16 (2023) 6235.

[15] S. Li, X. Yue, Q. Li, H. Peng, B. Dong, T. Liu, H. Yang*, J. Fan*, S. Shu*, F. Qiu*, Q. Jiang, Development and applications of aluminum alloys for aerospace industry, Journal of Materials Research and Technology 27 (2023) 944-983.

[16] Yu‑Hang Chu, Liang‑Yu Chen*, Bo‑Yuan Qin, Wenbin Gao, Fanmin Shang, Hong‑Yu Yang*, Lina Zhang, Peng Qin, Lai‑Chang Zhang*, Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti–6Al–4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution, Acta Metallurgica Sinica (English Letters) (2023).

[17] Y.-F. Yan, S.-Q. Kou*, H.-Y. Yang*, S.-L. Shu, F.-J. Shi, F. Qiu, Q.-C. Jiang, Microstructure-based simulation on the mechanical behavior of particle reinforced metal matrix composites with varying particle characteristics, Journal of Materials Research and Technology 26 (2023) 3629-3645.

 

2022年

[1] B.-X. Dong, Q. Li, H.-Y. Yang*, T.-S. Liu, F. Qiu*, S.-L. Shu, Q.-C. Jiang, L.-C. Zhang*, Synergistic optimization in solidification microstructure and mechanical performance of novel (TiCxNy−TiB2)p/Al nanocomposites: Design, tuning and mechanism, Composites Part A: Applied Science and Manufacturing 155 (2022) 106843. (高被引论文)

[2] Jun-Nan Dai, Shu-Qing Kou, Hong-Yu Yang*, Zheng-Bo Xu, Shi-Li Shu, Feng Qiu, Qi-Chuan Jiang, L.-C. Zhang, High-content continuous carbon fibers reinforced PEEK matrix composite with ultra-high mechanical and wear performance at elevated temperature, Composite Structures 295 (2022) 115837.

[3] S.-S. Li, F. Qiu, H.-Y. Yang*, S. Liu, T.-S. Liu, L.-Y. Chen, Q.-C. Jiang, Strengthening of dislocation and precipitation for high strength and toughness casting Al–Zn–Mg–Cu alloy via trace TiB2+TiC particles, Materials Science and Engineering: A 857 (2022) 144107.

[4] T.-S. Liu, F. Qiu*, H.-Y. Yang*, C.-L. Tan, B.-X. Dong, J.-F. Xie, S.-L. Shu, Q.-C. Jiang, L.-C. Zhang*, Versatility of trace nano-TiC–TiB2 in collaborative control of solidification-rolling-welding microstructural evolution in Al–Mg–Si alloy for enhanced properties, Materials Science and Engineering: A 851 (2022) 143661.

[5] Z.-B. Xu, S.-Q. Kou, H.-Y. Yang*, B.-X. Dong, Y. Han, L.-Y. Chen, F. Qiu, Q.-C. Jiang, The effect of carbon source and molar ratio in Fe–Ti–C system on the microstructure and mechanical properties of in situ TiC/Fe composites, Ceramics International 48 (2022) 30418–30429.

[6] Y.-F. Yan, S.-Q. Kou, H.-Y. Yang*, S.-L. Shu, J.-B. Lu, Effect mechanism of mono-particles or hybrid-particles on the thermophysical characteristics and mechanical properties of Cu matrix composites, Ceramics International 48 (2022) 23033–23043.

[7] X.-Y. Yao, F. Qiu*, H.-Y. Yang*, S.-L. Shu, T.-T. Li, Q.-C. Jiang, Role of in-situ nanocrystalline in solidification behaviors manipulation, microstructure refinement, and mechanical properties enhancement of Al-Cu4/Al-Mg1 alloys, Materials Characterization 194 (2022) 112408.

[8] F. Zhang, F.-J. Shi, B.-X. Dong*, H.-Y. Yang*, Effect of Ta, Nb and Zr additions on the microstructures and mechanical properties of 70vol% TiC/Al cermets, Ceramics International 48(21) (2022) 32479-32490.

[9] H. Zhang, F. Qiu*, H.-Y. Yang*, W.-X. Wang, S.-L. Shu, Q.-C. Jiang, Microstructure manipulation mechanism and mechanical properties improvement of H13 steel via trace nano-(TiC+TiB2) particles, Materials Characterization 188 (2022) 111924.

 

2021年:

[1] Yang H-Y, Yan Y-F, Liu T-S, Dong B-X, Chen L-Y, Shu S-L, et al. Unprecedented enhancement in strength-plasticity synergy of (TiC+Al6MoTi+Mo)/Al cermet by multiple length-scale microstructure stimulated synergistic deformation. Composites Part B: Engineering. 2021; 225: 109265. (IF=11.322)

[2] Yang H-Y, Wang Z, Chen L-Y, Shu S-L, Qiu F, Zhang L-C. Interface formation and bonding control in high-volume-fraction (TiC+TiB2)/Al composites and their roles in enhancing properties. Composites Part B: Engineering. 2021; 209: 108605. (高被引论文)

[3] Dong B-X, Li Q, Wang Z-F, Liu T-S, Yang H-Y*, Shu S-L, et al. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Composites Part B: Engineering 2021; 217: 108912. (高被引论文)

[4] Liu T-S, Qiu F, Dong B-X, Geng R, Zha M, Yang H-Y*, et al. Role of Trace Nanoparticles in Establishing Fully Optimized Microstructure Configuration of Cold-rolled Al Alloy. Materials & Design. 2021; 206: 109743.

[5] Dong BX, Ma XD, Liu TS, Li Q, Yang HY*, Shu SL, Zhang BQ, Qiu F*, et al. Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles. Journal of the American Ceramic Society. 2021; 104(6): 2820-2835.

[6] Qiu F, Zhang H, Li C-L, Wang Z-F, Chang F, Yang H-Y*, et al. Simultaneously enhanced strength and toughness of cast medium carbon steels matrix composites by trace nano-sized TiC particles. Materials Science & Engineering A. 2021; 819: 141485.

[7] Zhu L, Qiu F*, Zou Q, Han X, Shu S-L, Yang H-Y*, et al. Multiscale design of α-Al, eutectic silicon and Mg2Si phases in Al-Si-Mg alloy manipulated by in situ nanosized crystals. Materials Science and Engineering: A. 2021; 802: 140627.

[8] Yang H-Y, Cai Z-J, Zhang Q, Shao Y, Dong B-X, Xuan Q-Q, et al. Comparison of the effects of Mg and Zn on the interface mismatch and compression properties of 50 vol% TiB2/Al composites. Ceramics International. 2021;47(15):22121-9.

[9] S.-Q. Kou, Y.-L. Gao, W. Song, H.-L. Zhao, Y.-B. Guo, S. Zhang*, H.-Y. Yang*, Compression properties and work-hardening behavior of the NiAl matrix composite reinforced with in situ TaC ceramic particulates, Vacuum (2021) 110035.

[10] Q. Lin*, L. Liu, H. Yang*, L. Li, Wetting of SiC by molten Cu–20Me–2Cr (Me=Ag, Mn, Si, and Sn) alloys at 1373 K, Vacuum 185 (2021) 110002.

[11] Xie K, Ge Y, Shi Y, Yang H*, Lin Q*. Wetting of silica and 304 stainless steel by SnO-P2O5-ZnO glass at 500–600 °C. Materials Today Communications. 2021;26:102103.

 

2020年:

[1] Yang HY, Wang Z, Yue X, Ji PJ, Shu SL. Simultaneously improved strength and toughness of in situ bi-phased TiB2–Ti(C,N)–Ni cermets by Mo addition. Journal of Alloys and Compounds. 2020;820:153068.

[2] Lin Q*, Yang F, Yang H-Y*, Sui R, Shi Y, Wang J. Wetting of graphite by molten Cu–xSn–yCr ternary alloys at 1373 K. Carbon. 2020; 159: 561-569.

[3] Yang H-Y, Yue X, Wang Z, Shao Y, Shu S. Strengthening mechanism of TiC/Al composites using Al-Ti-C/CNTs with doping alloying elements (Mg, Zn and Cu). Journal of Materials Research and Technology. 2020;9(3):6475-87.

[4] Li Q, Qiu F*, Dong B-X, Yang H-Y*, Shu S-L, Zha M, et al. Investigation of the influences of ternary Mg addition on the solidification microstructure and mechanical properties of as-cast Al–10Si alloys. Materials Science and Engineering: A. 2020; 798: 140247.

[5] Li T-T, Yang H-Y*, Miao T-J, Peng H-L, Chen X, Zhu L, Duan T-T, Qiu F*, et al. Microstructure refinement and strengthening of Al–Cu alloys manipulated by nanocrystalline phases formed by in situ crystallization of Ni–Nb–Ti metallic glasses in melt. Journal of Materials Research and Technology. 2020; 9(3): 4494-4505.

[6] Liu S, Zhang X, Peng H-L, Han X, Yang H-Y*, Li T-T, Zhu L, Zhang S, Qiu F*, et al. In situ nanocrystals manipulate solidification behavior and microstructures of hypereutectic Al-Si alloys by Zr-based amorphous alloys. Journal of Materials Research and Technology. 2020;9(3):4644-4654.

[7] X. Han, Z. Zhang, Y. Rong, S.J. Thrush, G.C. Barber, H. Yang*, F. Qiu*, Bainite kinetic transformation of austempered AISI 6150 steel, Journal of Materials Research and Technology 9(2) (2020) 1357-1364.

[8] X. Han, Z. Zhang, Y. Pan, G.C. Barber, H. Yang*, F. Qiu*, Sliding Wear Behavior of Laser Surface Hardened Austempered Ductile Iron, Journal of Materials Research and Technology 9 (2020) 14609-14618.

[9] X. Han, Z. Zhang, J. Hou, S.J. Thrush, G.C. Barber, Q. Zou, H. Yang*, F. Qiu*, Tribological behavior of heat treated AISI 6150 steel, Journal of Materials Research and Technology 9(6) (2020) 12293-12307.

[10] Yang H-Y, Wang Z, Shu S-L, Lu J-B. Effect of Ta addition on the microstructures and mechanical properties of in situ bi-phase (TiB2-TiCxNy)/(Ni-Ta) cermets. Ceramics International. 2019;45(4):4408-17.
授权专利:

1. 寇淑清, 徐政博, 杨宏宇, 邱丰. 一种MXene石墨烯协同强化高含量碳纤维增强PEEK基复合材料及其制备方法. 中国发明专利,ZL202210236366.3, 授权日期: 2023.03.28.

2.杨宏宇, 刘林, 邱丰, 舒世立, 陈靓瑜, 邵勇, 石凤健. 原位内生纳米(TiC-Al3Ti)/Al多孔复合材料及其制备方法. 中国发明专利, ZL201811609107.0, 授权日期: 2021.01.05.

3.杨宏宇, 刘林, 邱丰, 舒世立, 陈靓瑜, 邵勇, 黄忠富. 纳米碳管和纳米TiC混杂增强铝基复合材料及其制备方法. 中国发明专利, ZL201811609884.5, 授权日期: 2021.06.01.

4.Qiu Feng, Dong Baixin, Yang Hongyu, Jiang Qichuan. Metodo per pre-dispersione di nanoparticelle in pacchetti per favorire una dispersione uniforme in fusion. Ufficio Italiano Brevetti, N. 102019000025423, 2021.12.16.

5.Qiu Feng, Liu Tianshu, Zhao Jianrong, Yang Hongyu, Jiang Qichuan. Metodo per la preparazione del foglio di rotolamento bidirezionale a controllo verticale di rotolamento TiC rinforzata con lega Al-Cu-Mg. Ufficio Italiano Brevetti, N. 102019000025429, 2021.12.27.

6.邱丰, 佟昊天, 杨宏宇, 舒世立. 一种多相陶瓷颗粒混杂制备高弹性模量高强度铝合金的方法. 中国发明专利, ZL201811607758.6,授权日期: 2021.02.12.

7.邱丰, 董柏欣, 杨宏宇, 姜启川. 一种基于内生纳米TiCxNy颗粒的陶铝复合材料的制备方法. 中国发明专利, ZL 201811608113.4, 授权日期: 2020.05.22.

8.邱丰, 佟昊天, 杨宏宇, 舒世立. 一种多尺度陶瓷颗粒混杂高弹性模量高强度铝合金及其制备方法. 中国发明专利, ZL201811608130.8, 授权日期: 2020.03.20.

9.邱丰, 刘天舒, 杨宏宇, 姜启川. 一种微量微纳米混杂颗粒增强Al-Cu-Mg-Si板材控轧制备方法. 中国发明专利, ZL201811607792.3, 授权日期: 2020.03.20.

10.邱丰, 佟昊天, 姜启川, 杨宏宇. 一种双尺度陶瓷颗粒混杂高弹性模量高强度铝合金及其制备方法. 中国发明专利, ZL201811608128.0, 授权日期: 2020.03.20.

11.邱丰, 李强, 杨宏宇, 姜启川. 一种基于多相混杂尺度陶瓷颗粒强化剂强化铝硅合金的方法. 中国发明专利, ZL201811607770.7, 授权日期: 2020.07.03.

12.邱丰; 刘天舒; 赵建融; 杨宏宇. 熔体内原位微纳米颗粒强化Al-Cu-Mg-Si合金板材的制备方法,中国发明专利,ZL201811607452.0,授权日期: 2020.05.08.

13.邱丰, 董柏欣, 姜启川, 杨宏宇. 一种小包内纳米颗粒预分散辅助熔体内均匀分散的方法. 中国发明专利, ZL201811607801.9, 授权日期: 2019.9.10.

14.邱丰, 刘天舒, 赵建融, 姜启川, 杨宏宇. 一种双向垂直控轧微量TiC增强Al-Cu-Mg合金板材的制备方法. 中国发明专利, ZL201811607780.0, 授权日期: 2019.10.22.

15.邵勇, 郭平义, 周应国, 杨宏宇, 黄忠富. 一种空心凸齿类锻件的成形方法. 中国发明专利, ZL 201610383398.0, 授权日期: 2017.10.27.
获奖情况:

1. 2018年校级本科优秀毕业设计指导教师;

2. 2020年硕士研究生国家奖学金获得者指导教师;

3. 2021年校级本科优秀毕业设计指导教师;

4. 2023年硕士研究生国家奖学金获得者指导教师;

5. 2021.12.17,长春市2021年“超越杯”青年科技创新创业大赛,一等奖,中共长春市委组织部;

6. 2023.08, 吉林省第二届博士后创新创业大赛, 优秀奖, 吉林省人力资源和社会保障厅;

7. 2023.10.14, “互联网+”大学生创新创业大赛(指导教师), 银奖, 吉林省“互联网+”大学生创新创业大赛组织委员会;

8. 2023.09.10, 第二届中国·长春“自创杯”创新创业大赛,一等奖,长春市科学技术局.
社会兼职:

中国材料研究学会凝固科学与技术分会理事;

《特种铸造及有色合金》杂志第二届青年编委。
指导学生: 在读:硕士研究生5人,博士研究生1
已毕业:硕士研究生4人,博士研究生0
治学格言: 当我们跨越一座高山,也就跨越一个真实的自己!
备注 个人英文学术主页:https://www.researchgate.net/profile/Hongyu-Yang-9


上一篇:管凯

友情链接