研究员

当前位置: 首页 > 师资队伍 > 研究员 > 材料加工工程系 > 正文

杨宏宇

来源: 时间:2022年11月25日 15:32 作者: 点击:

个人主页

姓名:杨宏宇undefined

性别:女

职称:研究员;博士研究生导师

所在系别:材料加工工程

最高学历:研究生

最高学位:博士学位

电话:18362892910

Emailyanghongyu2021@jlu.edu.cn

备注:个人英文学术主页:https://www.researchgate.net/profile/Hongyu-Yang-9

详细情况
所在学科专业: 材料加工工程
研究方向:

杨宏宇,研究员,博士生导师,省“长白英才计划”青年拔尖人才。研究方向:纳米高效调控合金组织及强韧化;纳米功能陶瓷制备、复合材料界面设计及功能化应用。承担国家自然基金(2项)、博士后基金、吉林省科技发展计划项目等课题11项。近五年作为第一/通讯作者在Composites Part B: Engineering (IF=12.7),Carbon (IF=10.5), International Journal of Extreme Manufacturing (IF=16.1), Composites Part A: Applied Science and Manufacturing (IF=8.1) 等国际期刊上发表SCI论文60篇(中科院分区一区论文44篇),其中影响因子大于10的SCI论文7篇,ESI高被引论文5篇,引用2645余次,  H影响因子29。授权发明专利17项,国际发明专利2项,专利转化5项。担任中国材料研究学会凝固科学与技术分会理事,担任International Journal of Extreme Manufacturing (中科院分区一区 SCI, IF=16.1)、特种铸造及有色合金 (核心期刊)青年编委和中国铸造装备与技术(核心期刊)编委,在中国材料大会暨世界材料大会、第十二届亚澳复合材料大会、全国镁合金青年学术会议等国内外学术会议作邀请报告11 次;获长春市教学竞赛一等奖和吉林大学教学竞赛一等奖。
讲授课程:

1. 材料加工与纳米技术,本科生(春季学期) ;

2. 金属材料强韧化原理与技术, 研究生(春季学期) ;

3. 生产实习, 本科生(秋季学期) ;

4. 综合实验, 本科生(春季学期) ;

5. 现代液态金属成型方法, 本科生(秋季学期)。
教育经历:

1. 2005.09.01-2009.06.30, 吉林大学, 学士;

2. 2009.09.01-2014.06.30, 吉林大学, 博士.
工作经历:

1. 2014.07-2018.10, 江苏科技大学, 讲师;

2. 2018.11-2021.06, 江苏科技大学, 副教授;

3. 2018.12-2021.12, 吉林大学, 脱产博士后;

4. 2021.07-2022.11, 吉林大学, 副研究员/博士生导师;

5. 2022.11-至今,吉林大学, 研究员/博士生导师。
科研项目:

1.国家自然科学基金面上项目, 批准号: 52371109, 微量纳米颗粒调控镁铝系合金微观组织及同步提高强塑性机制, 经费: 51万, 2024.01-2028.12, 在研, 负责人; 

2.国家自然科学基金青年项目, 批准号: 51701086, 合金元素参与下CNTs/Al复合材料界面行为及其热物理性能研究, 经费: 25万, 2018.01-2021.12, 结题, 负责人;

3. 吉林省“长白英才计划”青年拔尖人才项目, 纳米颗粒高效强韧化合金技术,经费: 25万元, 2025.01-2027.12, 在研, 负责人; 

4.吉林省科技发展计划项目(重点研发), 批准号: 20230201146GX, 高性能、高服役寿命冲压模具材料产业化应用开发研究, 经费: 50万, 2023.01-2025.12, 在研, 负责人;

5. 上海航天科技创新基金, 批准号: SPMI2024-05, 高强超塑镁合金快速气胀变形机理与形性协同调控方法, 经费: 20万, 2024.06-2025.12, 在研, 负责人;

6.中国博士后科学基金面上项目, 批准号: 2020M670849, 熔体内原位纳米介质协同调控铝合金微观组织构型及强韧化机制, 经费: 8万, 2020.05-2021.11, 结题, 负责人;

7.吉林省科技发展计划项目(自然科学基金),批准号: 20220101210JC,纳米强化相、多层次组织构型及使役性能协同调控机制,经费: 10万, 2022.07-2025.06, 在研, 负责人;

8.吉林省科技发展计划项目(一汽专项子项), 非热处理低压铝合金材料开发, 批准号: 20220301024GX, 经费: 70万, 2023.01-2024.12, 在研,子项负责人;

9.吉林省科技发展计划项目(科创副总), 吉林省企业科创专员, 经费: 10 万, 2023.06-2025.05, 在研, 负责人;

10.广东省基础与应用基础研究基金项目, 批准号: 2019A1515110268, 内生纳米陶瓷及固溶元素调控CNTs/Al梯度热沉材料界面化学, 经费: 10万, 2020.01-2022.12, 在研, 负责人;

11. 吉林大学工科集群青年人才专项支持计划, 经费: 50万, 2024.01-2025.12, 在研,负责人。

学术论文:

近五年作为第一/通讯作者在Composites Part B: Engineering (IF=12.7),Carbon (IF=10.5), International Journal of Extreme Manufacturing (IF=16.1), Composites Part A: Applied Science and Manufacturing (IF=8.1) 等国际期刊上发表SCI中科院分区一区论文44篇,其中影响因子大于10的SCI论文7篇,ESI高被引论文5篇,成果如下(*通讯作者):

2024年

[1] T.-S. Liu, L. Zhu, H.-Y. Yang*, H.-Y. Cui, J. Meng, F. Qiu*, B.-X. Dong, S.-L. Shu, Q.-C. Jiang, L.-C. Zhang*, Significantly enhanced fatigue resistance and mechanisms of hypoeutectic Al-Si composite calibrated using trace in-situ nanocrystals, Composites Part B 271 (2024) 111138.

[2] Y. Jiang, Y.-Z. Zou, H.-Y. Yang*, Y.-H. Lin, R.-F. Guo, F. Qiu*, H. Zhang, C.-D. Li, F. Chang, F.-J. Shi, Q.-C. Jiang, Development of ceramic nanoparticles reinforced high Cr tool and die steels with high comprehensive performance, Ceramics International 50 (2024) 5052–5064.

[3] Y.-Z. Wei, L.-Y. Zhao, L.-H. Shi, H.-Y. Yang, R.-F. Guo, H.-L. Zhao, L.-Y. Chen, F. Qiu, Q.-C. Jiang, L.-C. Zhang, Excellent strength-toughness combination of NiAl–30Cr composites with novel in situ composite microstructure containing NiAl matrix and Cr single-phase, Materials Science and Engineering: A 897 (2024) 146341.

[4] Y.-Z. Zhang, B.-X. Dong, C.-G. Wang, B.-C. Yan, H.-Y. Yang, F. Qiu, S.-L. Shu, Q.-C. Jiang, Review on manufacturability and strengthening mechanisms of particulate reinforced Mg composites, Journal of Materials Research and Technology 30 (2024) 3152-3177.

[5] X. Zhong, Q.-Y. Li, Y. Gong, X.-Z. Duan, Y. Shao, H.-Y. Yang*, F. Qiu*, Q. Jiang, Effects of various proportions TiB2p-TiCp reinforced Al–Cu–Mg composites in high-temperature mechanical properties and sliding wear behaviors, Journal of Materials Research and Technology 30 (2024) 4169-4180.

[6] C.-D. Li, Y.-L. Li, Y.-Z. Zou, Y.-H. Lin, H.-Y. Yang*, J. Meng, L.-Y. Chen, F. Qiu*, Q.-C. Jiang, Thermal fatigue performance enhancement of new high-Cr martensitic die steels based on overall microstructure manipulation by trace TiC–TiB2 nanoparticles, Materials Science and Engineering: A 901 (2024) 146468.

[7] Y.-X. Luo, B.-X. Dong*, H.-Y. Yang*, F. Qiu*, B.-C. Yan, S.-L. Shu, Q.-C. Jiang, F.-J. Shi, Research progress on nanoparticles reinforced magnesium alloys, Journal of Materials Research and Technology 30 (2024) 5166-5191.

[8] Y. Jiang, B.-X. Dong, J. Fan*, F. Qiu*, H.-Y. Yang*, S.-L. Shu, F. Chang, Q.-C. Jiang, L.-C. Zhang*, Advance on rock-breaking cutter steels: A review of characteristics, failure modes, molding processes and strengthening technology, Journal of Materials Research and Technology 31 (2024) 2328-2354.

[9] C.-R. Song, B.-X. Dong*, S.-Y. Zhang, H.-Y. Yang*, L. Liu*, J. Kang, J. Meng, C.-J. Luo, C.-G. Wang, K. Cao, J. Qiao, S.-L. Shu, M. Zhu, F. Qiu*, Q.-C. Jiang, Recent progress of Al–Mg alloys: Forming and preparation process, microstructure manipulation and application, Journal of Materials Research and Technology 31 (2024) 3255-3286.

[10] Z. Tian, B.-X. Dong*, X.-W. Chen, J. Fan, H.-Y. Yang*, S.-L. Shu, F. Qiu*, Q.-C. Jiang, Effects and mechanisms of rare earth and calcium on the flame retardancy of magnesium alloys, Journal of Materials Research and Technology 30 (2024) 9542-9560.

[11] X. Wu, Z.-P. Guan, H.-Y. Yang*, B.-X. Dong*, L.-C. Zhang*, J. Meng, C.-J. Luo, C.-G. Wang, K. Cao, J. Qiao, S.-L. Shu, J. Kang, M. Zhu, F. Qiu*, Q.-C. Jiang, Sub-rapid solidification microstructure characteristics and control mechanisms of twin-roll cast aluminum alloys: A review, Journal of Materials Research and Technology 32 (2024) 874-914.

[12] X. Zhong, Y. Li, H.-Y. Yang*, Y. Shao, J. Meng, F. Qiu, Q. Jiang, Effect of synergistic microalloying on the microstructural optimization of Mo/NiAl alloy with excellent mechanical properties under rapid non-equilibrium solidification, Materials Science and Engineering: A 908 (2024) 146783.

[13] Z. Xu, S.-q. Kou, B.-X. Dong, X. Zhong, H. Yang*, L. Liu*, R. Guo, S.-L. Shu, F. Qiu*, L.-C. Zhang*, Preparation, reaction mechanism and microwave-absorbing application of functional transition metal carbide/nitride ceramic materials, Journal of Materials Research and Technology 31 (2024) 2593-2617.

[14] Y.-C. Gao, B.-X. Dong*, H.-Y. Yang*, X.-Y. Yao, S.-L. Shu*, J. Kang, J. Meng, C.-J. Luo, C.-G. Wang, K. Cao, J. Qiao, M. Zhu, F. Qiu*, Q.-C. Jiang, Research progress, application and development of high performance 6000 series aluminum alloys for new energy vehicles, Journal of Materials Research and Technology 32 (2024) 1868-1900.

 

2023年

[1] T.-S. Liu, F. Qiu*, H.-Y. Yang*, S. Liu, Q.-C. Jiang, L.-C. Zhang*, Exploring the potential of FSW-ed Al–Zn–Mg–Cu-based composite reinforced by trace in-situ nanoparticles in manufacturing workpiece with customizable size and high mechanical performances, Composites Part B: Engineering (2023) 110425.

[2] C.-D. Li, F. Qiu, H.-Y. Yang*, F. Chang, T.-Y. Li, H. Zhang, Q.-C. Jiang, Role and mechanism of innovative addition process of trace nano-TiCp in microstructure manipulation and significant mechanical properties enhancement of H13 steels, Journal of Materials Processing Technology 311 (2023) 117819.

[3] T.-J. Miao, S.-Y. Zhang, F. Qiu*, H.-Y. Yang*, T.-S. Liu, S.-L. Shu*, T.-T. Duan, Q.-C. Jiang, Friction stir welding of high strength and toughness cast Al-Si7-Cu4-Mg0.3 alloys manipulated by in-situ nanocrystals, Journal of Materials Processing Technology 118221 (2023) 322.

[4] Y.-F. Yan, S.-Q. Kou, H.-Y. Yang*, B.-X. Dong, S.-L. Shu, L.-Y. Chen, F. Qiu, L.-C. Zhang*, Manipulating interface bonding and microstructure via tuning interfacial reaction for enhancing mechanical property of in-situ TiC/Al cermets, Journal of Materials Processing Technology 317 (2023) 117995.

[5] X.-Y. Song, Y.-J. Wang, J.-X. Zhang, D.-A. Du, H.-Y. Yang*, L. Zhao, F. Peng*, X. Li*, F. Qiu, Microstructure and mechanical properties of aluminum alloy composites with endogenous nano-TiCp, Ceramics International 49 (2023) 6923–6931.

[6] X.-D. Ma, H.-Y. Yang*, B.-X. Dong, S.-L. Shu, Z. Wang, Y. Shao, Q.-C. Jiang, F. Qiu*, Novel method to achieve synergetic strength–ductility improvement of Al–Cu alloy by in situ TiC–TiB2 particles via direct reaction synthesis, Materials Science and Engineering: A 869 (2023) 144810.

[7] T.-S. Liu, F. Qiu*, H.-Y. Yang*, S.-L. Shu, J.-F. Xie, Q.-C. Jiang, L.-C. Zhang, Insights into the influences of nanoparticles on microstructure evolution mechanism and mechanical properties of friction-stir-welded Al 6061 alloys, Materials Science and Engineering: A 871 (2023) 144929.

[8] Y.-F. Yan, X. Zhang, Y. Shao, H.-Y. Yang*, F. Qiu, S.-L. Shu, S.-Q. Kou*, Numerical modeling and failure evolution of microstructure-based in-situ TiB2 and TiC+TiB2 reinforced Cu matrix composites, Journal of Materials Research and Technology 24 (2023) 8606-8617.

[9] Y.-F. Yan, S.-Q. Kou*, H.-Y. Yang*, Y. Shao, F. Qiu, S.-L. Shu, Synergistic optimization of mechanical and tribological properties of TiC modified copper-graphite composites by direct current in-situ sintering, Ceramics International 49(16) (2023) 27069-27078.

[10] Y.-F. Yan, S.-Q. Kou, H.-Y. Yang*, S.-L. Shu*, F. Qiu*, Q.-C. Jiang, L.-C. Zhang*, Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy: preparation, performance, and mechanisms, International Journal of Extreme Manufacturing 5(3) (2023) 032006. (高被引论文)

[11] F. Chang, C.-D. Li, H.-Y. Yang*, F. Qiu, S.-L. Shu, L.-Y. Chen, Q.-C. Jiang, Hot-work die steel with superior mechanical properties at room and high temperatures prepared via a combined approach of composition design and nanoparticle modification, Journal of Materials Research and Technology 25 (2023) 1748-1760.

[12] J.-R. Sun, B.-X. Dong, H.-Y. Yang*, S.-L. Shu, F. Qiu*, Q.-C. Jiang, L.-C. Zhang*, The Role of Lithium in the Aging Precipitation Process of Al-Zn-Mg-Cu Alloys and Its Effect on the Properties, Materials 16(13) (2023) 4750.

[13] T.-S. Liu, B.-X. Dong*, H.-Y. Yang*, F. Qiu*, S.-L. Shu*, Q.-C. Jiang, Review on role of intermetallic and ceramic particles in recrystallization driving force and microstructure of wrought Al alloys, Journal of Materials Research and Technology 27 (2023) 3374–3395.

[14] Z.-J. Bao, H.-Y. Yang*, B.-X. Dong, F. Chang, C.-D. Li, Y. Jiang, L.-Y. Chen, S.-L. Shu*, Q.-C. Jiang, F. Qiu*, Development Trend in Composition Optimization, Microstructure Manipulation, and Strengthening Methods of Die Steels under Lightweight and Integrated Die Casting, Materials 16 (2023) 6235.

[15] S. Li, X. Yue, Q. Li, H. Peng, B. Dong, T. Liu, H. Yang*, J. Fan*, S. Shu*, F. Qiu*, Q. Jiang, Development and applications of aluminum alloys for aerospace industry, Journal of Materials Research and Technology 27 (2023) 944-983. (高被引论文)

[16] Yu‑Hang Chu, Liang‑Yu Chen*, Bo‑Yuan Qin, Wenbin Gao, Fanmin Shang, Hong‑Yu Yang*, Lina Zhang, Peng Qin, Lai‑Chang Zhang*, Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti–6Al–4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution, Acta Metallurgica Sinica (English Letters) (2023).

[17] Y.-F. Yan, S.-Q. Kou*, H.-Y. Yang*, S.-L. Shu, F.-J. Shi, F. Qiu, Q.-C. Jiang, Microstructure-based simulation on the mechanical behavior of particle reinforced metal matrix composites with varying particle characteristics, Journal of Materials Research and Technology 26 (2023) 3629-3645.

 

2022年

[1] B.-X. Dong, Q. Li, H.-Y. Yang*, T.-S. Liu, F. Qiu*, S.-L. Shu, Q.-C. Jiang, L.-C. Zhang*, Synergistic optimization in solidification microstructure and mechanical performance of novel (TiCxNy−TiB2)p/Al nanocomposites: Design, tuning and mechanism, Composites Part A: Applied Science and Manufacturing 155 (2022) 106843. (高被引论文)

[2] Jun-Nan Dai, Shu-Qing Kou, Hong-Yu Yang*, Zheng-Bo Xu, Shi-Li Shu, Feng Qiu, Qi-Chuan Jiang, L.-C. Zhang, High-content continuous carbon fibers reinforced PEEK matrix composite with ultra-high mechanical and wear performance at elevated temperature, Composite Structures 295 (2022) 115837.

[3] S.-S. Li, F. Qiu, H.-Y. Yang*, S. Liu, T.-S. Liu, L.-Y. Chen, Q.-C. Jiang, Strengthening of dislocation and precipitation for high strength and toughness casting Al–Zn–Mg–Cu alloy via trace TiB2+TiC particles, Materials Science and Engineering: A 857 (2022) 144107.

[4] T.-S. Liu, F. Qiu*, H.-Y. Yang*, C.-L. Tan, B.-X. Dong, J.-F. Xie, S.-L. Shu, Q.-C. Jiang, L.-C. Zhang*, Versatility of trace nano-TiC–TiB2 in collaborative control of solidification-rolling-welding microstructural evolution in Al–Mg–Si alloy for enhanced properties, Materials Science and Engineering: A 851 (2022) 143661.

[5] Z.-B. Xu, S.-Q. Kou, H.-Y. Yang*, B.-X. Dong, Y. Han, L.-Y. Chen, F. Qiu, Q.-C. Jiang, The effect of carbon source and molar ratio in Fe–Ti–C system on the microstructure and mechanical properties of in situ TiC/Fe composites, Ceramics International 48 (2022) 30418–30429.

[6] Y.-F. Yan, S.-Q. Kou, H.-Y. Yang*, S.-L. Shu, J.-B. Lu, Effect mechanism of mono-particles or hybrid-particles on the thermophysical characteristics and mechanical properties of Cu matrix composites, Ceramics International 48 (2022) 23033–23043.

[7] X.-Y. Yao, F. Qiu*, H.-Y. Yang*, S.-L. Shu, T.-T. Li, Q.-C. Jiang, Role of in-situ nanocrystalline in solidification behaviors manipulation, microstructure refinement, and mechanical properties enhancement of Al-Cu4/Al-Mg1 alloys, Materials Characterization 194 (2022) 112408.

[8] F. Zhang, F.-J. Shi, B.-X. Dong*, H.-Y. Yang*, Effect of Ta, Nb and Zr additions on the microstructures and mechanical properties of 70vol% TiC/Al cermets, Ceramics International 48(21) (2022) 32479-32490.

[9] H. Zhang, F. Qiu*, H.-Y. Yang*, W.-X. Wang, S.-L. Shu, Q.-C. Jiang, Microstructure manipulation mechanism and mechanical properties improvement of H13 steel via trace nano-(TiC+TiB2) particles, Materials Characterization 188 (2022) 111924.

 

2021年:

[1] Yang H-Y, Yan Y-F, Liu T-S, Dong B-X, Chen L-Y, Shu S-L, et al. Unprecedented enhancement in strength-plasticity synergy of (TiC+Al6MoTi+Mo)/Al cermet by multiple length-scale microstructure stimulated synergistic deformation. Composites Part B: Engineering. 2021; 225: 109265. (IF=11.322)

[2] Yang H-Y, Wang Z, Chen L-Y, Shu S-L, Qiu F, Zhang L-C. Interface formation and bonding control in high-volume-fraction (TiC+TiB2)/Al composites and their roles in enhancing properties. Composites Part B: Engineering. 2021; 209: 108605. (高被引论文)

[3] Dong B-X, Li Q, Wang Z-F, Liu T-S, Yang H-Y*, Shu S-L, et al. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Composites Part B: Engineering 2021; 217: 108912. (高被引论文)

[4] Liu T-S, Qiu F, Dong B-X, Geng R, Zha M, Yang H-Y*, et al. Role of Trace Nanoparticles in Establishing Fully Optimized Microstructure Configuration of Cold-rolled Al Alloy. Materials & Design. 2021; 206: 109743.

[5] Dong BX, Ma XD, Liu TS, Li Q, Yang HY*, Shu SL, Zhang BQ, Qiu F*, et al. Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles. Journal of the American Ceramic Society. 2021; 104(6): 2820-2835.

[6] Qiu F, Zhang H, Li C-L, Wang Z-F, Chang F, Yang H-Y*, et al. Simultaneously enhanced strength and toughness of cast medium carbon steels matrix composites by trace nano-sized TiC particles. Materials Science & Engineering A. 2021; 819: 141485.

[7] Zhu L, Qiu F*, Zou Q, Han X, Shu S-L, Yang H-Y*, et al. Multiscale design of α-Al, eutectic silicon and Mg2Si phases in Al-Si-Mg alloy manipulated by in situ nanosized crystals. Materials Science and Engineering: A. 2021; 802: 140627.

[8] Yang H-Y, Cai Z-J, Zhang Q, Shao Y, Dong B-X, Xuan Q-Q, et al. Comparison of the effects of Mg and Zn on the interface mismatch and compression properties of 50 vol% TiB2/Al composites. Ceramics International. 2021;47(15):22121-9.

[9] S.-Q. Kou, Y.-L. Gao, W. Song, H.-L. Zhao, Y.-B. Guo, S. Zhang*, H.-Y. Yang*, Compression properties and work-hardening behavior of the NiAl matrix composite reinforced with in situ TaC ceramic particulates, Vacuum (2021) 110035.

[10] Q. Lin*, L. Liu, H. Yang*, L. Li, Wetting of SiC by molten Cu–20Me–2Cr (Me=Ag, Mn, Si, and Sn) alloys at 1373 K, Vacuum 185 (2021) 110002.

[11] Xie K, Ge Y, Shi Y, Yang H*, Lin Q*. Wetting of silica and 304 stainless steel by SnO-P2O5-ZnO glass at 500–600 °C. Materials Today Communications. 2021;26:102103.

 

2020年:

[1] Yang HY, Wang Z, Yue X, Ji PJ, Shu SL. Simultaneously improved strength and toughness of in situ bi-phased TiB2–Ti(C,N)–Ni cermets by Mo addition. Journal of Alloys and Compounds. 2020;820:153068.

[2] Lin Q*, Yang F, Yang H-Y*, Sui R, Shi Y, Wang J. Wetting of graphite by molten Cu–xSn–yCr ternary alloys at 1373 K.

Carbon. 2020; 159: 561-569.

[3] Yang H-Y, Yue X, Wang Z, Shao Y, Shu S. Strengthening mechanism of TiC/Al composites using Al-Ti-C/CNTs with doping alloying elements (Mg, Zn and Cu). Journal of Materials Research and Technology. 2020;9(3):6475-87.

[4] Li Q, Qiu F*, Dong B-X, Yang H-Y*, Shu S-L, Zha M, et al. Investigation of the influences of ternary Mg addition on the solidification microstructure and mechanical properties of as-cast Al–10Si alloys. Materials Science and Engineering: A. 2020; 798: 140247.

[5] Li T-T, Yang H-Y*, Miao T-J, Peng H-L, Chen X, Zhu L, Duan T-T, Qiu F*, et al. Microstructure refinement and strengthening of Al–Cu alloys manipulated by nanocrystalline phases formed by in situ crystallization of Ni–Nb–Ti metallic glasses in melt. Journal of Materials Research and Technology. 2020; 9(3): 4494-4505.

[6] Liu S, Zhang X, Peng H-L, Han X, Yang H-Y*, Li T-T, Zhu L, Zhang S, Qiu F*, et al. In situ nanocrystals manipulate solidification behavior and microstructures of hypereutectic Al-Si alloys by Zr-based amorphous alloys. Journal of Materials Research and Technology. 2020;9(3):4644-4654.

[7] X. Han, Z. Zhang, Y. Rong, S.J. Thrush, G.C. Barber, H. Yang*, F. Qiu*, Bainite kinetic transformation of austempered AISI 6150 steel, Journal of Materials Research and Technology 9(2) (2020) 1357-1364.

[8] X. Han, Z. Zhang, Y. Pan, G.C. Barber, H. Yang*, F. Qiu*, Sliding Wear Behavior of Laser Surface Hardened Austempered Ductile Iron, Journal of Materials Research and Technology 9 (2020) 14609-14618.

[9] X. Han, Z. Zhang, J. Hou, S.J. Thrush, G.C. Barber, Q. Zou, H. Yang*, F. Qiu*, Tribological behavior of heat treated AISI 6150 steel, Journal of Materials Research and Technology 9(6) (2020) 12293-12307.

[10] Yang H-Y, Wang Z, Shu S-L, Lu J-B. Effect of Ta addition on the microstructures and mechanical properties of in situ bi-phase (TiB2-TiCxNy)/(Ni-Ta) cermets. Ceramics International. 2019;45(4):4408-17.

授权专利:

1. 寇淑清, 徐政博, 杨宏宇, 邱丰. 一种MXene石墨烯协同强化高含量碳纤维增强PEEK基复合材料及其制备方法. 中国发明专利,ZL202210236366.3, 授权日期: 2023.03.28.

2.杨宏宇, 刘林, 邱丰, 舒世立, 陈靓瑜, 邵勇, 石凤健. 原位内生纳米(TiC-Al3Ti)/Al多孔复合材料及其制备方法. 中国发明专利, ZL201811609107.0, 授权日期: 2021.01.05.

3.杨宏宇, 刘林, 邱丰, 舒世立, 陈靓瑜, 邵勇, 黄忠富. 纳米碳管和纳米TiC混杂增强铝基复合材料及其制备方法. 中国发明专利, ZL201811609884.5, 授权日期: 2021.06.01.

4.Qiu Feng, Dong Baixin, Yang Hongyu, Jiang Qichuan. Metodo per pre-dispersione di nanoparticelle in pacchetti per favorire una dispersione uniforme in fusion. Ufficio Italiano Brevetti, N. 102019000025423, 2021.12.16.

5.Qiu Feng, Liu Tianshu, Zhao Jianrong, Yang Hongyu, Jiang Qichuan. Metodo per la preparazione del foglio di rotolamento bidirezionale a controllo verticale di rotolamento TiC rinforzata con lega Al-Cu-Mg. Ufficio Italiano Brevetti, N. 102019000025429, 2021.12.27.

6.邱丰, 佟昊天, 杨宏宇, 舒世立. 一种多相陶瓷颗粒混杂制备高弹性模量高强度铝合金的方法. 中国发明专利, ZL201811607758.6,授权日期: 2021.02.12.

7.邱丰, 董柏欣, 杨宏宇, 姜启川. 一种基于内生纳米TiCxNy颗粒的陶铝复合材料的制备方法. 中国发明专利, ZL 201811608113.4, 授权日期: 2020.05.22.

8.邱丰, 佟昊天, 杨宏宇, 舒世立. 一种多尺度陶瓷颗粒混杂高弹性模量高强度铝合金及其制备方法. 中国发明专利, ZL201811608130.8, 授权日期: 2020.03.20.

9.邱丰, 刘天舒, 杨宏宇, 姜启川. 一种微量微纳米混杂颗粒增强Al-Cu-Mg-Si板材控轧制备方法. 中国发明专利, ZL201811607792.3, 授权日期: 2020.03.20.

10.邱丰, 佟昊天, 姜启川, 杨宏宇. 一种双尺度陶瓷颗粒混杂高弹性模量高强度铝合金及其制备方法. 中国发明专利, ZL201811608128.0, 授权日期: 2020.03.20.

11.邱丰, 李强, 杨宏宇, 姜启川. 一种基于多相混杂尺度陶瓷颗粒强化剂强化铝硅合金的方法. 中国发明专利, ZL201811607770.7, 授权日期: 2020.07.03.

12.邱丰; 刘天舒; 赵建融; 杨宏宇. 熔体内原位微纳米颗粒强化Al-Cu-Mg-Si合金板材的制备方法,中国发明专利,ZL201811607452.0,授权日期: 2020.05.08.

13.邱丰, 董柏欣, 姜启川, 杨宏宇. 一种小包内纳米颗粒预分散辅助熔体内均匀分散的方法. 中国发明专利, ZL201811607801.9, 授权日期: 2019.9.10.

14.邱丰, 刘天舒, 赵建融, 姜启川, 杨宏宇. 一种双向垂直控轧微量TiC增强Al-Cu-Mg合金板材的制备方法. 中国发明专利, ZL201811607780.0, 授权日期: 2019.10.22.

15.邵勇, 郭平义, 周应国, 杨宏宇, 黄忠富. 一种空心凸齿类锻件的成形方法. 中国发明专利, ZL 201610383398.0, 授权日期: 2017.10.27.
获奖情况:

人才奖项:

1. 2024年,吉林省“长白英才计划”青年拔尖人才;

2. 2024年,吉林大学工科集群青年人才专项支持计划。

 

教学奖项:

1. 2024年,吉林大学第十一届青年教师教学水平大赛,一等奖;

2. 2024年,长春市教学竞赛,一等奖。

 

创新创业奖项:

1. 2021年,长春市2021年“超越杯”青年科技创新创业大赛,一等奖,中共长春市委组织部。

 

指导学生参加竞赛奖项:

1. 2024年,中国大学生机械工程创新创意大赛铸造工艺设计赛,国家三等奖(2项) 指导教师,中国机械工程学会;

2. 2024年,中国大学生机械工程创新创意大赛铸造工艺设计赛北部赛区竞赛,北部赛区二等奖(2项),中国机械工程学会;

3. 2023年,指导大创省级优秀结题1项。

 

指导学生获奖:

1. 2018年,2021年,2024年,校级本科优秀毕业设计指导教师;

2. 2023-2024年,指导研究生获得国家奖学金3人次;

4. 2023年,指导本科生科研训练计划优秀结题1项。

社会兼职:

1. 中国材料研究学会凝固科学与技术分会理事;

2. 吉林省企业科创副总;

3. 《International Journal of Extreme Manufacturing》青年编委;

4. 《特种铸造及有色合金》杂志青年编委;

5. 《中国铸造装备与技术》杂志编委。
指导学生: 在读:硕士研究生7人,博士研究生2人
已毕业:硕士研究生4人,博士研究生0
治学格言: 当我们跨越一座高山,也就跨越一个真实的自己!
备注 个人英文学术主页:https://www.researchgate.net/profile/Hongyu-Yang-9


上一条:管凯

© 版权所有:吉林大学材料科学与工程学院

地址:吉林省长春市人民大街5988号

邮编:130022

电话:0431-85094375

E-mail:cailiao@jlu.edu.cn

请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。